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ABSTRACT

A three-step procedure to measure the surface accuracy of a parabolic dish antenna is
described.   A description is given of  the use of  the procedure to  detect  defects in  the
reflecting surface of a 4.63 meter diameter parabolic dish.  The information is then used
to guide adjustments of the surface curvature of the dish to improve  performance at 8.4
GHz.  A reduction in angular width of the principal lobe of the dish antenna pattern by a
factor of about two and a more than doubling of dish gain is demonstrated.   Details of a
robotic-turret-mounted  laser  range  finder  instrument  used  to  perform  the  surface
measurements and a description of how the surface curvature of the dish was adjusted to
achieve improved performance are presented.  

I.  INTRODUCTION

Imperfections and structural deformations of the reflecting surface of parabolic dish antennas can
be a significant source of signal loss and low performance of radio telescopes.  Such defects are not
easily identified and corrected by users in many cases.  Various techniques have been employed by
professional radio astronomers to quantitatively characterize the surfaces of parabolic antennas to
reveal regions of a reflecting surface that may need mechanical adjustment to achieve optimum
antenna  performance.   Among  these  techniques  are  microwave  holography2,  optical
photogrammetry3, and laser range finding4.  

For amateur radio astronomers these techniques are sometimes impractical to implement due to the
complexity of the techniques, expense involved in obtaining the equipment, difficulty in performing
the  measurements  and/or  difficulty  in  analyzing  the  resulting  data.   However,  due  to  recent
availability of relatively inexpensive robotic hardware, laser range-finding modules, versatile serial
communication interface modules, and free/open-source software tools to aid in performing data
analyses, it is now possible for amateur radio astronomers on restricted budgets to make suitable
dish-surface measurements straightforwardly by assembling and using powerful surface-measuring
instruments to detect surface defects.  

This document describes a three-step procedure using a robotic-turret-mounted laser-rangefinder
instrument to measure surface accuracy of a parabolic dish.  The steps are:

1)  Measure distances from the focal point to points on the surface of the dish.

2)  Determine a paraboloid reference surface for the dish.
 
3)  Calculate deviations of the dish surface from the reference surface.
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A detailed description of how each of these three steps may be implemented is discussed in this
document.  The document is organized as follows:  

Section I provides a general introduction, Section II describes how each of the three steps may be
implemented.  Section III describes the curvature modification process used on the example dish.
Section IV presents performance measurement results at 8.4 GHz, Section V presents a summary
and  Section  VI  lists  references.   The  document  concludes  with  an   Appendix  that  gives  our
derivation of a formula that is used in Section II.  

II.  DESCRIPTION OF THE PROCEDURE STEPS

Step 1:  Measure distances from the focal point to points on the surface of the dish

The first step consists of measuring the distances from the focal point of the dish to the reflecting
surface at numerous points on the dish.  As an example to demonstrate the procedure we use a 4.63
meter diameter primary-focus parabolic dish presently being used for radio astronomy at 8.4 GHz.
The dish is shown in Figure 1.  

    

                        Fig. 1  The 4.63 meter diameter dish used as the example for this paper.  
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A  laser  rangefinder-based  instrument  assembled  by  the  author  is  used  to  make  distance
measurements from the focal point of the dish to the dish surface.  Figure 2 shows a composite 3-
dimensional image of the more than 5,000 points measured using the instrument.  

Fig.2  A composite 3-D image of the points measured with the laser rangefinder instrument.

The laser  rangefinder-based  instrument  used  to  make  the measurements  is  shown in  Figure  3,
mounted onto an 8” diameter PVC pipe to conveniently and temporarily replace the existing feed
horn assembly on the dish.  The instrument was mounted at the focal point of the dish to perform
the measurements.  
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Fig.  3.   The  robotic-turret-mounted  laser  rangefinder  instrument  used  for  the  distance
measurements.

Components of the range finding instrument are labeled in the image above and consist of: 

A:   The laser board portion of a Fluke 414D Laser Distance Meter5

B:   Porcupine Labs LR4-USB interface board6

C:   Remote controlled 2-axis robotic pan/tilt “PhantomX” turret assembly7

D:   Raspberry Pi 4b computer
E:   Raspberry Pi compatible camera
F:   8” diameter PVC tube mount 
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Inter-connections of the instrument components are shown in Figure 4. 

              Fig. 4.  Diagram showing how the components of the instrument are connected.

The instrument is controlled by a computer program, written in C++ by the author, running on the
Raspberry Pi computer (RPi4).  The RPi4 is mounted onto the same plate as the robotic pan/tilt
turret.   Remote  interaction  with  the  Raspberry  Pi  is  achieved  via  ethernet  connection  from a
computer in the telescope control room.  The Raspberry Pi desktop display and program control are
accessed  remotely  via  a  Virtual  Network  Computing  (VNC)  connection  into  the  Raspberry  Pi
computer from the control room computer.  While a VNC connection can be established via the
wireless WiFi capability of the Raspberry Pi, it was found that a wire ethernet connection between
the computers was more reliable and permitted faster responses from the instrument.     

The RPi4-compatible camera is used occasionally to verify remotely from the telescope control
room  that  the  turret  actually  moves  the  laser  spot  to  the  proper  position  when  the  turret  is
commanded to move.   A camera interface capability is  standard in the  Raspberry Pi  operating
system and is used to display images directly on the desktop display as desired, viewed remotely
from the telescope control  room via the VNC connection to the RPi4.   The RPi4 is  used in a
“headless” configuration; i.e., no display monitor or keyboard is attached to the RPi4.  

The instrument is used to measure and record distances from focal point to dish reflecting surface
while stepping the tilt axis of the turret in arbitrarily selected 1 degree steps from a near-rim point
on the dish surface through the vertex position of the surface to the opposite-side near-rim point at a
given pan angle of the turret.  Greater or lesser spatial resolution can be obtained by varying the
angular step size in the computer program; steps as small as 0.087 degree are possible with the
turret used.  The time required to measure distance to a point is about 1 second with an accuracy of
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about 2mm.  We opted to measure each point five times taking the fifth measurement as our data
value to allow time for mechanical settling of the turret after a move and to allow stabilizing of the
rangefinder for each measurement position.  The collection of measurements, representing a single
“scan” across the dish surface, is saved as a data file consisting of a list of 3-dimensional points that
is readable by most spreadsheet programs.  Each line entry in a data file consists of three elements
a,b,c specifying a point in three dimensions; these are 

a = pan angle of the turret, 
b = tilt angle of the turret, and 
c = distance to the dish surface. 

After completing a scan the pan angle of the turret is incremented by whatever  increment is needed
to achieve the desired angular separation between measured scans, in our case we chose 5 degrees,
and a new tilt-angle scan is initiated producing another scan across the surface and a another data
file of 3-D measurements.  The pan angle is incremented through a 180-degree range from -90
degrees to +90 degrees, in 5 degree steps in our case, to sample points over the entire dish surface
in 36 tilt-angle “scans”.  We arbitrarily defined the 360-degree rotation of the turret pan angle into a
range of -180 to +180 degrees; however, as the top platform of the turret is able to move in tilt
angle through a range greater than -90 to +90 degrees, i.e., it can move to either side of the top
center position, a range of only -90 to +90 degrees for pan angle covers the entire dish surface (and
more in this particular case) by the laser when using rim-to-rim scans in tilt angle.  

For this dish, each rim-to-rim scan uses tilt angles ranging from -73 degrees to +73 degrees in 1-
degree steps, or in whatever increment is selected to achieve the desired spatial resolution between
measured points.  A 73 degree tilt angle puts the laser position near a rim-edge position on the dish.
Time required to complete measurements over the entire surface of this dish at the angular spacing
between points we selected is about six hours.  If lesser resolution is acceptable the time needed to
acquire measurements of the dish surface is reduced accordingly.   

Figure 5 shows a view along the z-axis of the dish so that the reader can obtain a perspective and
sense of  orientation of the  physical  elements present  on the dish  with respect  to the measured
points.  

     Fig. 5.   Image showing orientation of the x and
                   y axes used during the data analyses.
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The selected spacing of the measured points obtained during the scans across the dish, oriented as
shown in Figure 5, provide a large number of points from which to determine the local curvature
over the entire surface of the dish.  A projection of the measured points onto the x-y plane are
shown in Figure 6.

Fig. 6.  An x-y plane projection of the measured points on the dish.  Note that a
portion of the scans during which the laser was blocked by the feed horn support
beams are shortened with respect  to  scans that  were not  blocked.   The partially
blocked scans appear at 120 degree intervals in the image.

The measured points are used in the subsequent analyses in two ways.  First, the points will be used
to determine a 3-dimensional paraboloid reference surface that describes the average curvature of
the dish.  Second, the points will be used to determine local deviations from the reference surface so
that a plan can be made for correcting the areas of deviation to better match the reference surface.
A better match is expected to yield improved dish performance.  

Step 2.  Determine a paraboloid reference surface 

Each of the rim-to-rim scans across the dish surface produce data points that describe a parabola
that may perturbed by local defects in the dish surface.  Further, it is important to recognize that the
coordinates of the data points,  as collected and saved by the instrument, are recorded using an
unusual  coordinate  system.   In particular,  each point  is  recorded in terms of  “pan angle”,  “tilt
angle”,  and “range”.   It  is  therefore  useful  to  translate  those coordinates  into a  more standard
coordinate system, such as the x, y, z orthogonal coordinate system, so that standard analytical
techniques  may  be  straightforwardly  applied  to  the  data.   Figure  7  shows  graphically  the
relationship between elements of the two coordinate systems.  
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Fig. 7.  Diagram showing relationships between the ϕ, θ, r coordinate elements
shown in red and the x, y, z coordinate elements shown in blue for a point P on
the surface of the dish.  Point F is the focal point of the dish at F(0, 0, f).  

Point P on the surface of the dish may be represented by either P(ϕ, θ, r) or P(x,y,z), where
the coordinates ϕ, θ, r are defined as:

ϕ =  pan angle of the robotic turret
θ =  tilt angle of the robotic turret
r =  range to the surface as measured by the laser rangefinder

Referring  to  Figure  7,  the  relationships  between  elements  of  the  two  coordinate  systems are
therefore: 

x = rz sin( ϕ) (1)

y = rz cos( ϕ) (2)

z = r  (1 - cos( θ)) / 2 (3)

where rz = r sin(θ). (4)
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“rz”  is the the shortest distance from point P to the Z axis.  Our derivation of Eqn. 3 is given in the
Appendix of this document.  

By using Eqns 1-3 one may translate the coordinates of the points that have been measured in the
ϕ,θ,r coordinate system to coordinates of the more useful x,y,z coordinate system.  Doing so makes
possible direct comparisons of the z-components of the measured points with the z-components of
corresponding points on a reference surface.  “Corresponding”, in this case refers to points on the
reference surface that have the same x and y coordinate values as the measured points.    Deviations
of the z-components of the measured points from the z-components of the reference surface reveal
where, in terms of x,y coordinates, the defects lie on the dish surface, and by how much and in
which direction, relative to the z-axis, the dish surface deviates from the reference surface.   This
information is used to guide how mechanical adjustments are applied to the dish in attempts to
change the reflecting surface curvature to improve dish performance.  

A suitable paraboloid reference surface may now be determined from the measured, coordinate-
translated  points  to  permit  comparison  of  the  dish  surface  at  all  the  measured  points  with
corresponding points  of  a  reference  surface.    However,  calculating  the  coefficients,  ki  ,  for  a
general-case 3-D paraboloid reference surface of the form 

k1x2 + k2y2 + k3z2 + k4xy + k5yz + k6zx + k7x + k8y + k9z + k10 = 0

directly from the huge number of measured points is a complex undertaking typically involving
tedious matrix calculations and manipulations, and in the general case of an arbitrarily oriented
general-form paraboloid it is not even possible to calculate the ten parameters that are needed to
describe  the  paraboloid  using  the   direct  matrix  calculation  approach8.   If  one  constrains  the
reference paraboloid by insisting it be a centered paraboloid, a matrix solution can be obtained by
performing the complex matrix calculations9.   Fortunately, such general case and near-general-case
matrix solutions are not  required for us to solve our problem of obtaining a suitable reference
surface  if  we  further  constrain  the  reference  surface.   Indeed,  we  can  completely  avoid  the
complexity  of  the  general  case  solution  by  heavily  constraining  our  reference  paraboloid
appropriately.  

The task is dramatically simplified by requiring that the principal axis of our paraboloid be aligned
with the z-axis of the dish and that the paraboloid be symmetric about the z-axis of the dish.  These
two constraints reduce the number of parameters that we must solve for to two, instead of the ten
required for the general-case paraboloid.  

The constrained reference paraboloid will have the form: 

z  = A (x2 + y2) + B,  (5)

where coefficient A determines the opening angle of the paraboloid and coefficient B determines
the position of the vertex of the paraboloid along the z-axis.  

The process may be simplified further by calculating a series of best-fit 2-D parabolas from our
measured scans, one parabola for each of the scans, instead of trying to determine a 3-D paraboloid
directly from all of the data points simultaneously.  To do this, note that each of the scans produces
a parabola in the plane defined by the z-axis and any point in the scan that does not lie on the z-
axis.  Each parabola is of the form: 

z = ai x2 + bi  (6)
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for  the  i-th  scan  of  our  data  set.   Of  course,  the  parabola  produced  by  each  scan  will  have
perturbations from a perfect parabola that reflect local defects in the dish surface, therefore it is
desirable to fit each scan to a “best- fit” parabola of the form given by Eqn. 6.  

The coefficients ai and bi  for the i-th scan across the dish are easily determined using standard least-
squares techniques to fit the data points in the scan to obtain the two coefficients. Or equivalently,
as we opted to do instead, use the linear regression capability of the “R” language computer tool 10

to quickly determine the two coefficients for each scan.     

After performing linear regression on all 36 scans to obtain the sets of a i and bi values, we calculate
the average of the ai values and the average of the bi values to obtain the coefficients, A and B, of
Eqn. 5 for our reference parabola for the dish.  That is, 

  A=

∑
i=1

36

a i

36
, (7)

and 

B=

∑
i=1

36

bi

36
;   (8)

which, for our specific case, A = 0.162289324  and B = -0.000665645 for the best-fit parabola over
all scans.   To create a 3-D reference surface we use this best-fit 2-D parabola as a “parabola of
revolution” about the z-axis which yields as our reference paraboloid for this dish:

z   =   A (x2 + y2) + B   =   0.162289324 (x2 + y2) - 0.000665645 (9)

The benefit of having the mathematical expression, Eqn. 9, for the reference surface is that we may
use it to calculate the z-coordinate value of the reference surface at any of our measured 3-D points
to compare with the measured z-coordinate values at those points, the difference between the two
giving the amount of deviation, in the z direction, of the reflecting surface at that point from the
reference surface.  We use Eqn. 9 as the reference surface in the next step to identify areas of the
dish that may need mechanical adjustment to achieve better performance from the dish.  

Step 3.   Calculate deviations of the dish surface from the reference surface.

A useful method to view areas of the dish that deviate from a reference surface is to use a graphics
program to create a 3-D color map from a list of points, each point being specified by 3 coordinates
x, y, and z.  Steps 1 and 2 provide a means to convert each of our measured points into such points
for plotting.   Rather than plotting the 3D points directly,  which would simply create an image
similar to that shown in Figure 2, it is more relevant to plot the points using the x, y coordinates of
the measured points and the difference between z-values of the measured points and z-values of
corresponding points on the reference surface.  

Calculations  and  analyses  of  the  deviations  is  straightforwardly  accomplished  by  putting  the
measured data points and corresponding reference surface points into a spreadsheet from which
common plotting programs can read the x, y, and z-deviations.  In our case we use gnuplot 11 as the
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plotting program to view the deviations of the dish surface from the reference surface.  Figure 8
shows a 3-D image of the deviations of the dish surface from the reference surface including an x-y
plane projection color map of the surface deviations.  

Fig. 8.  A 3-D image showing deviations of the dish surface from the reference surface.
A projection of the deviations is  also shown on the x-y plane as a color map.  The
positions of the feed horn support beams is clearly evident in the image at 120-degree
angle separations.  

Figure 8 reveals that the uncorrected dish surface has significant-area deviations from the reference
surface.   Most deviations are shown to be in the 1-2 cm range above and below the reference
surface.  While this amount of deviation may seem small at first glance the fact that the deviations
extend over a significant fraction of the reflecting surface is sufficient to seriously degrade the
performance of the dish at 8.4 GHz.  

Figure 9 superimposes the x-y color map projection of Fig. 8 onto a photograph of the dish to
reveal where the deviation areas are located on the reflecting surface of the dish.  
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Fig. 9.  Dish surface-deviations measured by the laser-rangefinder instrument are shown
superimposed upon a photograph of the dish to reveal the areas of deviation, showing as
blue/purple, that are significant deviations in terms of causing performance degradation of
the dish.  Areas showing as white surrounded by black within the blue/purple regions are
off-scale regions of the plot in terms of magnitude toward the the blue direction (i.e., into the
page in this view).

The areas of blue/purple need mechanical adjustment  in a direction that is out of the page in this
view to better match the reference surface and to thereby improve performance of the dish.  

III.  MODIFICATION OF CURVATURE OF THE DISH

Once the locations and magnitudes of the deviations of the dish surface from an ideal reference
surface are known the task of mechanically correcting the deviations can be addressed.  Methods
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that can be used to correct surface deviations on a dish are many and varied but often involve
adding one or more adjustable assemblies to the back side of the dish to apply stresses to the
surface to force the local surface into a position that better matches a reference surface.  Which
adjustment method one might successfully apply to correct the surface curvature of a specific dish
depends upon how the dish surface is constructed, how it is supported by its back structure, and
what resources are available to be used to achieve the needed corrections.  A review of possible
methods that can be used for correction is beyond the scope of this document. 

The dish we are working with has the characteristics that the surface is made from relatively thin
aluminum and the steel back structure of the dish does not extend outward to the rim of the dish
surface leaving the outer edges of the dish unsupported and susceptible to deformation if stresses
are applied to the rim.  This fact can be used in this case to introduce beneficial distortions in the
curvature of the dish surface by applying stresses to the rim of the dish at selected positions on the
rim to yield a better match the calculated reference surface.  

As the most severe deviations in the surface of this dish are shown to be in a direction from front-
side toward back-side the deviations in curvature can perhaps be corrected by applying torsion
stresses at particular rim positions to pull the rim upward toward the feed horn position in those
areas.  Torsion stresses are introduced by attaching adjustable-length steel cables from the existing
steel attachment points of the feed horn support beam bases on the front side of the dish to rim
positions on the dish that correspond to the regions of largest deviation from the reference surface.
The amount of stress introduced to the rim is adjustable by turnbuckles attached to the ends of the
steel cables.  We elected to use three torsion cables; two attached to the rim at the lower (bottom
edge position in Fig. 9) edge position of the dish to the two steel upper feed horn support beam
bases and one attached to the rim at the right edge of the dish to the left upper feed horn support
beam base.  The locations of the torsion cables are shown in Figure 10.  

Fig.10.  Image showing locations of the three torsion cables used to adjust curvature
of the dish surface.
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By adjusting tension on the torsion cables we  are able to improve the match between the dish
surface and the calculated reference surface.  The improvement can be seen in the color map result s
from a new set of scans of the dish surface, shown in Figures 11a and 11b. 

a)

b)

Figs. 11 a,b.  Images showing that a more uniform match of the dish surface to the reference
surface has been achieved by applying torsion stresses to the rim edges of this dish.  
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While adjustment of the surface curvature has not achieved a perfect match with  the reference
surface the total area containing deviations and the magnitudes of the deviations have been reduced,
as seen by comparing Figs. 8,9 with Figs. 11a,b.  Deviations across the dish are generally now no
more than a centimeter different from the reference surface and less than a centimeter different over
most  of  the  dish surface.   As we show in the next  section adjusting the curvature  of the dish
achieved a significant improvement in performance of this dish at 8.4GHz.  

IV.  PERFORMANCE MEASUREMENTS

An important performance parameter for a parabolic dish antenna is the shape of the principal lobe
of the antenna pattern of the dish, typically reported as the full-width-at-half-maximum (FWHM) of
the angular profile of the principal lobe of the pattern, which we refer to here as Ωdish.  A convenient
method of measuring dish pattern beam width is made by sweeping the pointing direction of the
dish across the position of the sun in the sky to create an intensity profile as a function of pointing
angle.  If the sweep is performed by moving the azimuth angle of the dish the appropriate cosine
correction due to the elevation angle must be applied to the measured profile, of course.  No such
correction is necessary for elevation angle sweeps.  

In many cases, such a measured profile has an angular width approximately equal to the width of
the principal lobe of the dish beam pattern. The method works well for dishes that have a principal
lobe beam width much larger than the apparent  angular  width of  the  sun,  Ωsun,  which at  most
frequencies used by amateur radio astronomers is  about half a degree.  When the width of the
principal lobe of the dish pattern is nearly equal to or smaller than the angular width of the sun then
it is important to recognize that the shape of the measured profile is an integral convolution of the
beam pattern of the sun and the beam pattern of the dish, which results in a measured width that is
always greater than either, and in many cases significantly greater than the width of the principal
lobe of the dish pattern.  

If it can be assumed that the primary lobe of the dish beam pattern and the emission pattern of the
sun are both essentially Gaussian, which is usually a reasonable assumption, then a good estimate
of dish beam width, Ωdish, can be calculated from a profile scan of the sun by taking the square root
of  the  difference  of  the  squares  of  the  angular  width  of  the  measured  profile,  Ωprofile,  and  the
apparent angular width of the sun, Ωsun, respectively.  That is, 

Ωdish  =  sqrt( Ω2
profile -  Ω2

sun )  =  sqrt( Ω2
profile -  (0.5)2 )  =     sqrt( Ω2

profile -  0.25) (10)

Figure  12a  shows  measured  sun  profiles,  before  and  after  the  surface  correction  was  applied,
plotted on a linear scale to be able to easily determine the FWHM of the profiles.  Figure 12b shows
the same data plotted on a logarithmic scale to show the magnitude of the signal in terms of the
power level of the profile peak relative to the base line noise floor.  The difference between the
magnitude of a peak and that of the noise floor is proportional to the gain of the dish in both plots,
linear in the first and logarithmic in the second.  However, it should be noted that the solar flux was
somewhat higher on the day that the later profile was collected therefore the differences shown
include contributions due to an increased solar flux on the later day measurement.  A difference in
the solar flux levels on the two days does not affect the validity of the beam width measurements
but  does  influence  the  apparent  gain  values  observed  between  the  two  days,  giving  a  higher
apparent gain value on the day with the higher solar flux.  
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a)

b)

Figs. 12a,b.   Linear (12a) and logarithmic (12b) plots of profiles of the sun.  The solid blue
lines were collected on 20FEB2022 after the dish curvature was adjusted; the dashed lines
show sun profiles collected on 12JUL2021 before curvature adjustment was made.  
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Using Eqn. 10 and Fig. 11a,  the dish beam pattern FWHM before performing the adjustment of the
surface curvature dish is: 

Ωdish (before)  = sqrt( 1.092 – 0.52 )  = 0.97 degree (11)

and after the curvature adjustment,

Ωdish  (after)  = sqrt( 0.912 – 0.52 )  = 0.58 degree. (12)

The above analysis of the plots in Figure 12 demonstrate that the dish beam-pattern width has been
reduced by almost half as a result of adjusting surface curvature of this dish.  The gain was also
improved as a result of narrowing the beam pattern, of course, but not by as much as is suggested
by the magnitudes of the respective before/after profiles due to the solar flux difference on the
measurement days.  

Figures 12a and 12b show the results  of collecting profiles of the sun on two different  widely
separated days;  12JUL2021, before the surface curvature adjustment and 20FEB2022, after  the
surface curvature adjustment.  The solar flux on those two days differed. In particular, the 10.7cm
solar flux, in terms of spectral flux density, on 12JUL2021 and 20FEB2022 were 71.6 sfu and 97.1
sfu, respectively12.  Due to a combination of increased gain of the dish and higher solar flux on the
later profile measurement day, the apparent gain of the dish appears to have increased by roughly a
factor of 4 (i.e., about 6dB) as a result of adjusting the surface curvature.  But such a quantitative
conclusion is misleading and incorrect because solar flux was higher on the later measurement day
relative to the earlier measurement day. 

As mentioned, the 10.7 cm solar flux value on the later profile measurement day was about 30%
higher than when the earlier profile was collected.  Our experience at 1296 MHz with apparent gain
varying due to variations of solar flux density in the 70-100 sfu range is that the apparent gain
increases by about 1.5 dB for the amount of change in solar flux that existed between our profile
measurements13, i.e. the apparent gain is expected to increase by roughly 101.5 = 1.32, or 32%, due
to the increased level of solar flux on the later measurement day.   Thus, assuming that the apparent
gain versus solar flux behavior at 8.4 GHz is roughly similar to the behavior at 1296 MHz, our
estimate of the additional gain of the dish resulting from the curvature change is about 6dB-1.5dB =
4.5  dB  relative  to  the  uncorrected  dish,   or  conservatively,  more  than  twice  the  gain  of  the
uncorrected-surface.    

We note that low-level asymmetry exists in the beam profiles but believe the level of asymmetry
present is not significant with respect to the tasks this radio telescope is expected to perform.  

V.  SUMMARY

This document describes a 3-step procedure that can be used to measure the surface accuracy of
parabolic dishes.  Use of the procedure was demonstrated by applying it to a 4.63 meter diameter
parabolic  dish  antenna,  using  a  robotic-turret-mounted  laser  rangefinder  assembled  from
commercially available components.  A description was given of how the procedure is used to guide
surface curvature modifications of the dish.  It was shown that applying the procedure to guide
modifications of the dish-surface curvature resulted in significant performance improvement of the
dish at 8.4 GHz.  While the amount of curvature correction applied to this dish may seem to be
small in magnitude and perhaps not particularly important when using the dish at low frequencies it
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was demonstrated that correction of surface curvature over the relatively large fraction of  surface
affected by the non-optimum curvature provides significant improvement for operations of this dish
at 8 GHz.  
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14.  See any analytic geometry text, as for example, “Calculus and analytic geometry”, Fourth 
Edition, by George B. Thomas, Jr., 1968, Addison-Wesley Publishing Company, Reading, Mass., 
page 333.  

APPENDIX 

A derivation of Eqn. (3) of the main text is facilitated by recognizing that all  rim-to-rim scans
across the surface of a perfect-surface parabolic dish trace a common parabola.  The situation is
depicted in the figure below.  The blue lines represent a cross-section of the dish in the X-Z plane.
Points F and R represent the focal point of the dish and a point on the dish surface, respectively.
The red line of length, r, represents a laser rangefinder distance measurement path from point F to
point R, and θ is the tilt angle of the turret during a scan.  

The objective is to derive an expression for z in terms of r and θ only.   From the figure it is seen
that 

z = f – r cos(θ). .  (1)

 Recall that the general formula for a parabola in the X-Z plane, in terms of its focal distance, f, is14

x2 = 4f z. (2)
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Using the Pythagorean Theorem on the right-triangle FPR in the diagram, 

r2 = (f – z)2 + x2,  or (3)

r = sqrt( (f – z)2  + x2 ) . (4)

Substituting for x2 from Eqn. (2), 

r = sqrt( (f – z)2 + 4f z) = sqrt( f2 – 2fz + z2  + 4fz) = sqrt( f2 + 2fz + z2 ) = sqrt( (f + z)2) 

yields

r = f + z. (5)

Substituting for z from Eqn. (1), 

r = f + f – r cos(θ) = 2f – r cos(θ) (6)

and solving for f, 

f = (r + r cos(θ)) / 2.  (7)

Substituting for f in Eqn. (1),   

z =  ((r + r cos(θ) )/ 2) - r cos(θ)  = (r + r cos(θ) - 2 r cos(θ)) / 2 =  (r – r cos(θ)) / 2 

and therefore

z = r ( 1 – cos(θ)) / 2 (8)

Q.E.D.  
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